首页> 外文OA文献 >Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid
【2h】

Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid

机译:Cu-Therminol®Vp-1纳米流体高浓度抛物槽式太阳能集热器的热性能和熵产分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents results of a numerical study on the thermal and thermodynamic performance of ahigh concentration ratio parabolic trough solar collector using Cu-Therminol VP-1 nanofluid as the heattransfer fluid. A parabolic trough system with a concentration ratio of 113 and a rim angle of 80 has beenused in this study. The thermal physical properties of both the base fluid and the copper nanoparticleshave been considered temperature dependent. Inlet temperatures in the range 350–650 K and flow ratesin the range 1.22–135 m3 h 1 have been used. The numerical analysis consisted of combined Monte-Carloray tracing and computational fluid dynamics procedures. The Monte-Carlo ray tracing procedure is usedto obtain the actual heat flux profile on the receiver’s absorber tube, which is later coupled to a finitevolume based computational fluid dynamics tool to evaluate the thermal and thermodynamic performanceof the receiver. Results show that the thermal performance of the receiver improves as thenanoparticle volume fraction increases. The thermal efficiency of the system increases by about 12.5%as the nanoparticle volume fraction in the base fluid increase from 0% to 6%. The entropy generation ratesin the receiver reduce as the nanoparticle volume fraction increases for some range of Reynolds numbers.Above a certain Reynolds number, further increase in the Reynolds numbers makes the entropy generationhigher than that of a receiver with only the base fluid.
机译:本文介绍了以Cu-Therminol VP-1纳米流体为传热流体的高浓度比抛物槽太阳能集热器的热力学性能的数值研究结果。在这项研究中使用了抛物槽系统,其浓度比为113,边角为80。基础流体和铜纳米颗粒的热物理性质都被认为是温度依赖性的。入口温度为350–650 K,流速为1.22–135 m3 h 1。数值分析包括组合的蒙特卡洛瑞追踪和计算流体动力学程序。蒙特卡洛射线追踪程序用于获得接收器吸收管上的实际热通量分布,随后将其耦合到基于有限体积的计算流体动力学工具,以评估接收器的热和热力学性能。结果表明,接收器的热性能随着纳米粒子体积分数的增加而提高。随着基础流体中纳米颗粒体积分数从0%增加到6%,系统的热效率提高了约12.5%。在一定范围的雷诺数下,接收器中的熵产生率随着纳米粒子体积分数的增加而降低。在一定的雷诺数以上,雷诺数的进一步增加使熵产生比仅具有基础流体的接收器的熵产生更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号